skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Losilla, Mauricio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Electric organ discharge (EOD) duration in African weakly electric fish (Mormyridae) is the most variable waveform component between species and the basis for distinguishing species-specific signals. EOD duration is thought to be influenced by morphological and physiological features of electrocytes (the cells that comprise the electric organ), but the mechanistic details are poorly understood. It has long been known that EOD duration is modulated by androgen hormones, affording an opportunity to identify gene expression correlates of EOD duration differences. We induced EOD elongation in the mormyridBrienomyrus brachyistiusby administering 17α-methyltestosterone (17αMT) to three treatment groups: control (no 17αMT exposure), T1day and T8day (samples taken one and eight days after a single exposure to 17αMT, respectively). We then performed RNAseq, differential gene expression, and functional enrichment analysis to detect gene expression changes during EOD duration change. Our analyses indicate 44 genes whose expression changed in tandem with EOD elongation and include genes responsible for actin filaments and microtubules, extracellular matrix organization, and membrane lipid metabolism. Additionally, we found expression changes in one Na+channel beta subunit, and five K+voltage-gated channels. Together, these genes point toward specific cellular processes that contribute to morphological and physiological changes that contribute to EOD duration changes. 
    more » « less
  2. McCallion, A (Ed.)
    Abstract Gene duplication and subsequent molecular evolution can give rise to taxon-specific gene specializations. In previous work, we found evidence that African weakly electric fish (Mormyridae) may have as many as three copies of the epdl2 gene, and the expression of two epdl2 genes is correlated with electric signal divergence. Epdl2 belongs to the ependymin-related family (EPDR), a functionally diverse family of secretory glycoproteins. In this study, we first describe vertebrate EPDR evolution and then present a detailed evolutionary history of epdl2 in Mormyridae with emphasis on the speciose genus Paramormyrops. Using Sanger sequencing, we confirm three apparently functional epdl2 genes in Paramormyrops kingsleyae. Next, we developed a nanopore-based amplicon sequencing strategy and bioinformatics pipeline to obtain and classify full-length epdl2 gene sequences (N = 34) across Mormyridae. Our phylogenetic analysis proposes three or four epdl2 paralogs dating from early Paramormyrops evolution. Finally, we conducted selection tests which detected positive selection around the duplication events and identified ten sites likely targeted by selection in the resulting paralogs. These sites’ locations in our modeled 3D protein structure involve four sites in ligand binding and six sites in homodimer formation. Together, these findings strongly imply an evolutionary mechanism whereby epdl2 genes underwent selection-driven functional specialization after tandem duplications in the rapidly speciating Paramormyrops. Considering previous evidence, we propose that epdl2 may contribute to electric signal diversification in mormyrids, an important aspect of species recognition during mating. 
    more » « less
  3. Abstract The bowfin (Amia calva) is a ray-finned fish that possesses a unique suite of ancestral and derived phenotypes, which are key to understanding vertebrate evolution. The phylogenetic position of bowfin as a representative of neopterygian fishes, its archetypical body plan and its unduplicated and slowly evolving genome make bowfin a central species for the genomic exploration of ray-finned fishes. Here we present a chromosome-level genome assembly for bowfin that enables gene-order analyses, settling long-debated neopterygian phylogenetic relationships. We examine chromatin accessibility and gene expression through bowfin development to investigate the evolution of immune, scale, respiratory and fin skeletal systems and identify hundreds of gene-regulatory loci conserved across vertebrates. These resources connect developmental evolution among bony fishes, further highlighting the bowfin’s importance for illuminating vertebrate biology and diversity in the genomic era. 
    more » « less